Transcriptional codes and the control of neuronal identity.

نویسندگان

  • Ryuichi Shirasaki
  • Samuel L Pfaff
چکیده

The topographic assembly of neural circuits is dependent upon the generation of specific neuronal subtypes, each subtype displaying unique properties that direct the formation of selective connections with appropriate target cells. Studies of motor neuron development in the spinal cord have begun to elucidate the molecular mechanisms involved in controlling motor projections. In this review, we first describe the actions of transcription factors within motor neuron progenitors, which initiate a cascade of transcriptional interactions that lead to motor neuron specification. We next highlight the contribution of the LIM homeodomain (LIM-HD) transcription factors in establishing motor neuron subtype identity. Importantly, it has recently been shown that the combinatorial expression of LIM-HD transcription factors, the LIM code, confers motor neuron subtypes with the ability to select specific axon pathways to reach their distinct muscle targets. Finally, the downstream targets of the LIM code are discussed, especially in the context of subtype-specific motor axon pathfinding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genealogical method of urban typo-morphology with the aim of deriving pattern for providing form-based codes

Introduction: The emergence of form-based codes (FBCs), along with the familiar and near-universal rejection of conventional zoning, is a complex story, and more interesting than might first be supposed. The Codes Study generally does not track developer-driven form-based codes. The socio-economic context of form-based codes has shown positive FBC impacts on physical and environmental well-bein...

متن کامل

Mechanisms of temporal identity regulation in mouse retinal progenitor cells

While much progress has been made in recent years toward elucidating the transcription factor codes controlling how neural progenitor cells generate the various glial and neuronal cell types in a particular spatial domain, much less is known about how these progenitors alter their output over time. In the past years, work in the developing mouse retina has provided evidence that a transcription...

متن کامل

Specification of Neuronal Identities by Feedforward Combinatorial Coding

Neuronal specification is often seen as a multistep process: earlier regulators confer broad neuronal identity and are followed by combinatorial codes specifying neuronal properties unique to specific subtypes. However, it is still unclear whether early regulators are re-deployed in subtype-specific combinatorial codes, and whether early patterning events act to restrict the developmental poten...

متن کامل

From induction to conduction: how intrinsic transcriptional priming of extrinsic neuronal connectivity shapes neuronal identity

Every behaviour of an organism relies on an intricate and vastly diverse network of neurons whose identity and connectivity must be specified with extreme precision during development. Intrinsically, specification of neuronal identity depends heavily on the expression of powerful transcription factors that direct numerous features of neuronal identity, including especially properties of neurona...

متن کامل

Otx2 regulates the extent, identity and fate of neuronal progenitor domains in the ventral midbrain.

The specification of distinct neuronal cell-types is controlled by inducing signals whose interpretation in distinct areas along the central nervous system provides neuronal progenitors with a precise and typical expression code of transcription factors. To gain insights into this process, we investigated the role of Otx2 in the specification of identity and fate of neuronal progenitors in the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Annual review of neuroscience

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2002